Speech Recognition using MFCC and Neural Networks
نویسنده
چکیده
The most common mode of communication between humans is speech. As this is the most preferred way, humans would like to use speech to interact with machines also. That is why, automatic speech recognition has gained a lot of popularity. Many approaches for speech recognition exist like Dynamic Time Warping (DTW), Hidden Markov Model (HMM). This paper shows how Neural Network (NN) can be used for speech recognition and also investigates its performance in speech recognition. Feed-Forward Neural Network with back propagation algorithm has been applied. For the feature extraction of speech Mel Frequency Cepstrum Coefiicients (MFCC) has been used which gives a set of feature vectors of speech waveform. Earlier research has shown MFCC to be more accurate and effective than other feature extraction techniques in the speech recognition. The work has been done on MATLAB and experimental results show that system is able to recognize words at sufficiently high accuracy.
منابع مشابه
Improving the performance of MFCC for Persian robust speech recognition
The Mel Frequency cepstral coefficients are the most widely used feature in speech recognition but they are very sensitive to noise. In this paper to achieve a satisfactorily performance in Automatic Speech Recognition (ASR) applications we introduce a noise robust new set of MFCC vector estimated through following steps. First, spectral mean normalization is a pre-processing which applies to t...
متن کاملSpeech Emotion Recognition Using Residual Phase and MFCC Features
Abstract--The main objective of this research is to develop a speech emotion recognition system using residual phase and MFCC features with autoassociative neural network (AANN). The speech emotion recognition system classifies the speech emotion into predefined categories such as anger, fear, happy, neutral or sad. The proposed technique for speech emotion recognition (SER) has two phases : Fe...
متن کاملInvestigation of Combined use of MFCC and LPC Features in Speech Recognition Systems
problem, the assignment of speech recognition and the application fields are shown in the paper. At the same time as Azerbaijan speech, the establishment principles of speech recognition system and the problems arising in the system are investigated. The computing algorithms of speech features, being the main part of speech recognition system, are analyzed. From this point of view, the determin...
متن کاملIsolated Telugu Speech Recognition using MFCC and Gamma tone features by Radial Basis Networks in Noisy Environment
In this paper, Radial basis neural networks[1][12][17] have been examined for speech recognition using speech features MFCC (Mel frequency Coefficients) and Gamma tone frequency coefficients for isolated Telugu words in noisy environment. Speech feature vectors are used to train, validate and test the Radial basis neural networks.Experiments conducted in Office environment under the presence of...
متن کاملPersian Phone Recognition Using Acoustic Landmarks and Neural Network-based variability compensation methods
Speech recognition is a subfield of artificial intelligence that develops technologies to convert speech utterance into transcription. So far, various methods such as hidden Markov models and artificial neural networks have been used to develop speech recognition systems. In most of these systems, the speech signal frames are processed uniformly, while the information is not evenly distributed ...
متن کاملSpeaker recognition using pattern recognition neural network and feedforward neural network
Neha Chauhan Birla Institute of Technology, Mesra, Ranchi Abstract— Speaker Recognition is the computing task of validating a user’s claimed identity using speech characteristics. Main objective of speech recognition system is to communication with a device through our voice. Mel frequency Cepstral Coefficient (MFCC) features are combined with pitch and root mean square values and tested for im...
متن کامل